844 research outputs found

    Spectrum Preserving Tilings Enable Sparse and Modular Reference Indexing

    Get PDF
    The reference indexing problem for k-mers is to pre-process a collection of reference genomic sequences so that the position of all occurrences of any queried k-mer can be rapidly identified. An efficient and scalable solution to this problem is fundamental for many tasks in bioinformatics. In this work, we introduce the spectrum preserving tiling (SPT), a general representation of that specifies how a set of tiles repeatedly occur to spell out the constituent reference sequences in. By encoding the order and positions where tiles occur, SPTs enable the implementation and analysis of a general class of modular indexes. An index over an SPT decomposes the reference indexing problem for k-mers into: (1) a k-mer-to-tile mapping; and (2) a tile-to-occurrence mapping. Recently introduced work to construct and compactly index k-mer sets can be used to efficiently implement the k-mer-to-tile mapping. However, implementing the tile-to-occurrence mapping remains prohibitively costly in terms of space. As reference collections become large, the space requirements of the tile-to-occurrence mapping dominates that of the k-mer-to-tile mapping since the former depends on the amount of total sequence while the latter depends on the number of unique k-mers in. To address this, we introduce a class of sampling schemes for SPTs that trade off speed to reduce the size of the tile-to-reference mapping. We implement a practical index with these sampling schemes in the tool pufferfish2. When indexing over 30,000 bacterial genomes, pufferfish2 reduces the size of the tile-to-occurrence mapping from 86.3 GB to 34.6 GB while incurring only a 3.6 slowdown when querying k-mers from a sequenced readset. Availability: pufferfish2 is implemented in Rust and available at https://github.com/COMBINE-lab/pufferfish2

    Patch antenna in isotropic plasma : Resonant frequency

    Get PDF
    A method has been developed to compute the resonant frequency of a rectangular microstrip antenna immersed in a linear isotropic plasma medium using Wolf's dynamic dielectric constant model. The results obtained are in agreement with those obtained using spectral domain technique. It has been observed that the antenna resonates at a higher frequency inside the plasma than in free space

    Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis using MRI Images and Ensemble Bagging Classifier

    Full text link
    Structural alterations have been thoroughly investigated in the brain during the early onset of schizophrenia (SCZ) with the development of neuroimaging methods. The objective of the paper is an efficient classification of SCZ in 2 different classes: Cognitive Normal (CN), and SCZ using magnetic resonance imaging (MRI) images. This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for SCZ diagnosis using MRI images. In the proposed model, lightweight 3D CNN is used to extract both spatial and spectral features simultaneously from 3D volume MRI scans, and classification is done using an ensemble bagging classifier. Ensemble bagging classifier contributes to preventing overfitting, reduces variance, and improves the model's accuracy. The proposed algorithm is tested on datasets taken from three benchmark databases available as open-source: MCICShare, COBRE, and fBRINPhase-II. These datasets have undergone preprocessing steps to register all the MRI images to the standard template and reduce the artifacts. The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques. The performance metrics evidenced the use of this model to assist the clinicians for automatic accurate diagnosis of SCZ

    Reconstruction of Network Evolutionary History from Extant Network Topology and Duplication History

    Full text link
    Genome-wide protein-protein interaction (PPI) data are readily available thanks to recent breakthroughs in biotechnology. However, PPI networks of extant organisms are only snapshots of the network evolution. How to infer the whole evolution history becomes a challenging problem in computational biology. In this paper, we present a likelihood-based approach to inferring network evolution history from the topology of PPI networks and the duplication relationship among the paralogs. Simulations show that our approach outperforms the existing ones in terms of the accuracy of reconstruction. Moreover, the growth parameters of several real PPI networks estimated by our method are more consistent with the ones predicted in literature.Comment: 15 pages, 5 figures, submitted to ISBRA 201

    Unifying Parsimonious Tree Reconciliation

    Full text link
    Evolution is a process that is influenced by various environmental factors, e.g. the interactions between different species, genes, and biogeographical properties. Hence, it is interesting to study the combined evolutionary history of multiple species, their genes, and the environment they live in. A common approach to address this research problem is to describe each individual evolution as a phylogenetic tree and construct a tree reconciliation which is parsimonious with respect to a given event model. Unfortunately, most of the previous approaches are designed only either for host-parasite systems, for gene tree/species tree reconciliation, or biogeography. Hence, a method is desirable, which addresses the general problem of mapping phylogenetic trees and covering all varieties of coevolving systems, including e.g., predator-prey and symbiotic relationships. To overcome this gap, we introduce a generalized cophylogenetic event model considering the combinatorial complete set of local coevolutionary events. We give a dynamic programming based heuristic for solving the maximum parsimony reconciliation problem in time O(n^2), for two phylogenies each with at most n leaves. Furthermore, we present an exact branch-and-bound algorithm which uses the results from the dynamic programming heuristic for discarding partial reconciliations. The approach has been implemented as a Java application which is freely available from http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Nationwide trends of modern endodontic practices related to working length, instrumentation, magnification, and obturation: a comparative cross-sectional survey comparing endodontic and non-endodontic specialties practicing root canal treatment in India

    Get PDF
    Aim: The present study was designed to assess trends in contemporary endodontic practice regarding the techniques and materials used in endodontic therapy among dental practitioners from various regions of India. Methods: A cross-sectional questionnaire-based study was conducted amongst dentists who were pursuing postgraduates in endodontics (PG Endo) and other branches (PG-OB), specialists from other branches (MDS-OB) and specialists in endodontics (MDS-Endo) in various dental colleges representing East, West, North, South, and Central zones through an e-survey using Google forms. State-wise postgraduate dental college lists were obtained from the Dental Council of India (DCI) website. Using a multistage cluster random sampling method and considering the unanticipated response rate, emails were sent to 2100. A 29-item close-ended questionnaire, framed according to different aspects of endodontic treatment, was used to record the responses. Results: When the distribution of the groups of dentists was compared, the central zone had the highest number of PG-OB (44.2%) and the lowest number of MDS-Endo (8.4%). The electronic apex locator (EAL) method of working length determination has been reported less among MDS-Endo than MDS-OB. The difference between the usage of various methods for working length determination was significant among the different groups in all the zones. (p < 0.0001) Most MDS-Endo preferred the rotary method of instrumentation over the combination method for different zones. The majority of dental practitioners preferred a combination method of instrumentation. Conclusion: Zone-wise comparisons among dentists showed the majority of general dental practitioners preferred the combination method (radiographs and electronic apex locator) for working length determination. Most MDS-Endo preferred the rotary method of instrumentation over the combination method for different zones. All dental practitioners did not so commonly use magnification in all the zones. The single cone technique was the most opted by dental practitioners of all the zones

    Relative Abundance of Transcripts (RATs):Identifying differential isoform abundance from RNA-seq [version 1; referees: 1 approved, 2 approved with reservations]

    Get PDF
    The biological importance of changes in RNA expression is reflected by the wide variety of tools available to characterise these changes from RNA-seq data. Several tools exist for detecting differential transcript isoform usage (DTU) from aligned or assembled RNA-seq data, but few exist for DTU detection from alignment-free RNA-seq quantifications. We present the RATs, an R package that identifies DTU transcriptome-wide directly from transcript abundance estimates. RATs is unique in applying bootstrapping to estimate the reliability of detected DTU events and shows good performance at all replication levels (median false positive fraction < 0.05). We compare RATs to two existing DTU tools, DRIM-Seq & SUPPA2, using two publicly available simulated RNA-seq datasets and a published human RNA-seq dataset, in which 248 genes have been previously identified as displaying significant DTU. RATs with default threshold values on the simulated Human data has a sensitivity of 0.55, a Matthews correlation coefficient of 0.71 and a false discovery rate (FDR) of 0.04, outperforming both other tools. Applying the same thresholds for SUPPA2 results in a higher sensitivity (0.61) but poorer FDR performance (0.33). RATs and DRIM-seq use different methods for measuring DTU effect-sizes complicating the comparison of results between these tools, however, for a likelihood-ratio threshold of 30, DRIM-Seq has similar FDR performance to RATs (0.06), but worse sensitivity (0.47). These differences persist for the simulated drosophila dataset. On the published human RNA-seq dataset the greatest agreement between the tools tested is 53%, observed between RATs and SUPPA2. The bootstrapping quality filter in RATs is responsible for removing the majority of DTU events called by SUPPA2 that are not reported by RATs. All methods, including the previously published qRT-PCR of three of the 248 detected DTU events, were found to be sensitive to annotation differences between Ensembl v60 and v87

    Global Network Alignment Using Multiscale Spectral Signatures

    Get PDF
    Motivation: Protein interaction networks provide an important system-level view of biological processes. One of the fundamental problems in biological network analysis is the global alignment of a pair of networks, which puts the proteins of one network into correspondence with the proteins of another network in a manner that conserves their interactions while respecting other evidence of their homology. By providing a mapping between the networks of different species, alignments can be used to inform hypotheses about the functions of unannotated proteins, the existence of unobserved interactions, the evolutionary divergence between the two species and the evolution of complexes and pathways. Results: We introduce GHOST, a global pairwise network aligner that uses a novel spectral signature to measure topological similarity across disparate networks. It exhibits state-of-the-art performance on several network alignment tasks. We show that the spectral signature used by GHOST is highly discriminative, while the alignments it produces are also robust to experimental noise. When compared with other recent approaches, we find that GHOST is able to recover larger and biologically-significant, shared subnetworks between species. Availability: An efficient and parallelized implementation of GHOST, released under the Apache 2.0 license, is available at http:// cbcb.umd.edu/kingsford-group/ghostFunding: This work was supported by the National Science Foundation [CCF-1053918, EF-0849899, and IIS-0812111]; the National Institutes of Health [1R21AI085376]; and a University of Maryland Institute for Advanced Studies New Frontiers Award

    Zinc for the treatment of diarrhoea: effect on diarrhoea morbidity, mortality and incidence of future episodes

    Get PDF
    Background Zinc supplementation for the treatment of diarrhoea has been shown to decrease the duration and severity of the diarrhoeal episode, diarrhoea hospitalization rates and, in some studies, all-cause mortality. Using multiple outcome measures, we sought to estimate the effect of zinc for the treatment of diarrhoea on diarrhoea mortality and subsequent pneumonia mortality
    corecore